Approach:	One to one
Focus:	Demonstrating understanding of number operations
Resources:	Ngā kārie 7, kia 25 ngā mataono rite
Kupu:	

Questions / instructions:
E whā aku pātai pāngarau hei whakamārama māu.
Whakatenatenaite ākonga ki te whakamahi i ngā mataono rite, ki te whakamārama hoki i ana whakautu.

Whakaaturia ngā kāri 1a me 1b. 4 + 2 2 + 4

1. He ōrite te otinga o te 2 tāpiri i te 4 , me te 4 tāpiri i te 2? Whakamāramatia mai. Whakamahia ngā mataono hei āwhina i tō whakamārama.
PĀTAI ĀWHINA: Whakamāramatia mai, he aha i pēnā ai tō whakautu? Whakamāramatia mai ō whakaaro.
same
any other response
Strategy:
only 6 cubes, conceptual didn't see the need to rearrange; argues that the number of blocks doesn't change however they are arranged only 6 cubes
rearranges order and argues that order doesn't affect number of blocks
only 6 cubes (rearranges order and focusses on answer (counts 6 each time))

12 cubes (argues that they are mirror images (switched around), so are the same.)

12 cubes and counts 6 each time
doesn't use cubes at all argues clearly that if you had piles of 2 and 4 cubes the total would stay the same however the piles are organised.
doesn't use cubes, physically or conceptually says $2+4=6$ and $4+2=6$

Whakaaturia ngā kāri 2a me 2b.

2. He ōrite te otinga o te 4 tangohia te 2, me te 2 tangohia te 4? Whakamāramatia mai. Whakamahia ngā mataono hei āwhina i tō whakamārama.

$\begin{array}{ll}\text { PĀTAI ĀWHINA: } & \text { Whakamāramatia mai, he aha i } \\ \text { pēnā ai tō whakautu? } \\ & \text { Whakamāramatia mai } \\ & \text { ō whakaaro. }\end{array}$ any other response

Strategy:
uses 4 cubes (explains, without physically removing cubes; that you can take 2 from 4 but you can't take 4 from 2)
uses 4 cubes (shows that you have 2 left when you take 2 from 4, but that you cannot take 4 from 2 (or -2))
uses 6 cubes (sets out piles of 4 and 2; takes 2 away from pile of 4, leaving two; tries to take 4 away from pile of 2, can't do it (or-2))
doesn't use cubes at all says that $4-2$ is 2 , while $2-4$ is 2 (same) doesn't use cubes at all says that $4-2$ is 2 , but $2-4$ you can't do (or -2)

Whakaaturia te kāri 4. Kāore e whakamahia ngā mataono mō tēnei o ngā pātai.
4. He aha tētahi tau, mēnā ka tāpirihia atu ki te 8, ka tangohia rānei i te 8 , ko te 8 tonu te otinga?

> gives 0
> (number used in addition or subtraction)
5. He aha tētahi tau, mēnā ka whakareatia te 8 ki taua tau, ka wehea rānei te 8 ki taua tau, ko te 8 tonu te otinga?

Sets out 3 groups of 4 cubes; says that the same thing can be seen two ways: as 3 groups of 4 or as 4 groups of 3 ; therefore the same.
uses 12 cubes
sets out 3 groups of 4, rearranged into 4 groups of 3; says must be the same
uses 12 cubes
sets out 3 groups of 4 cubes; counts12; rearranges into 4 groups of 3 cubes, counts 12
uses 24 cubes
sets out 3 groups of 4 cubes; sets out another 12, in 4 groups of 3 cubes; shows number of blocks are the same
uses 24 cubes
sets out 3 groups of 4 cubes, counts 12; sets out another 12, in 4 groups of 3 cubes, counts 12
doesn't use cubes says 3×4 is $12 ; 4 \times 3$ is 12 , therefore same.

8

Whakaaturia ngā kāri 3a me 3b.

3. He ōrite te otinga o te 4 whakareatia ki te 3, me te 3 whakareatia ki te 4? Whakamāramatia mai. Whakamahia ngā mataono hei āwhina i tō whakamārama.

PĀTAI ĀWHINA: Whakamāramatia mai, he aha i pēnā ai tō whakautu?
Whakamāramatia mai ō whakaaro.
same
Strategy:
uses 12 cubes

