Approach: One to one Level: Year 4

Focus: Solving number problems using physical objects.
Resources: Two cue cards, 5 tens rods, 15 ones cubes, recording book.
Questions/instructions:
Show cue card 1: Room 1 - 26 children

Room 1 at Tupai School has 26 children.
Place 5 rods and 15 cubes in front of the student. \% responses

1. Can you show me 26 using these 2001 ('97)
rods and cubes?
arranged 2 tens rods and 6 ones cubes 92 (89)
2. Is it possible that there could be the same number of girls as boys in that class?

$$
\begin{aligned}
\text { yes, initially } & 70(63) \\
\text { PROMPT: If the student says " } n o \text { ", ask why? yes } & 8(10)
\end{aligned}
$$

3. Use the rods and cubes to show me how many boys and how many girls there would be in Room 1 if there was the same number of girls as boys.
PROMPT: You could use two of the tens rods and six of the ones cubes.
arranged 2 groups of
1 tens rod and 3 ones cubes 79 (76)
4. Now tell me how many girls there are, and how many boys there are.

1380 (73)

Put all of the rods and cubes back together.

Room 2 at Tupai School has 32 children.
5. Can you show me 32 using the rods and cubes? arranged 3 tens rods and 2 ones cubes 91 (88)
arranged 2 tens rods and 12 ones cubes 3 (4)
6. Could there be the same number of girls as boys in that class? yes, initially 56 (49)
prompt: If the student says " $n o$ ", ask why? yes 6 (8)
7. Use the rods and cubes to show me how many girls and how many boys there would be in Room 2 if there was the same number of girls as boys.

> arranged 2 groups of 1 tens rod and
> 6 ones cubes $55(43)$
8. Now tell me how many girls there are,
and how many boys there are. $16 \quad 61(46)$

Commentary

The year 4 students enjoyed high success with this task until they were required to rename from tens to ones in part 7 . The 2001 students had a small but consistent advantage over the 1997 students in parts 1 to 6 , and a larger advantage in parts 7 and 8 .

