NEMP Report 13: Science 1999

Rods

Approach: One to one

Level: Year 4 and year 8

Trend Task

Focus: Predict and investigate the heat conductivity of different materials, and explain practical applications. *Resources*: 5 rods, picture of saucepan, , timer, mug, paper towel, water (boiling), electric jug

Questions/instructions:	% resp	onses	After 2 minutes of feel tests:	% rest	bonses
In this activity you are going to find	1999 (*95)	1999 (195)	6 Now lift each rod out of the water	1999 (195)	1999 (195)
out and tell me about how quickly	ycai 4	ycar o	and place them on the table in	ycai T	ycai o
different materials let heat through			order from the one that let the heat		
them.			through most quickly, to the one		
Show student the rods as you name them			that let it through least quickly. Be		
show student the rous as you name them.			careful to lift them out with a paper		
1. Here are 5 rods. They are made of			towel so that you don't burn your		
wood, perspex, copper, steel and			fingers.		
aluminium.			Observations: copper first	80 (90)	86 (89)
I am going to put them into this cup			aluminium second	71 (79)	77 (83)
then pour in boiling water. Then I will			steel third	81 (81)	84 (86)
get you to touch the end of each rod			perspex fourth	65 (61)	70 (67)
to find out how much heat they are			wood fifth	68 (61)	71 (69)
letting through.					
2. But before we start, can you tell			7. Materials that let the heat travel		
me which rod you think will let the			through easily are called good		
heat move through most quickly?			conductors. Which rods were		
Deadlette a fea fact	10 (22)	20 (24)	good conductors of heat?	00 (05)	
Prediction for first: copper	10 (32)	28 (34)	copper	92 (95)	9/(9/)
aluminium	10 (27)	20 (22)	aluminium	$\frac{8}{(8)}$	95 (95) 40 (27)
steel	15 (15)	21 (19)	Sicci	J 4 (J4)	49 (37)
perspex	28 (15)	14 (14)	8. When toffee is made, the ingre-		
wood	38 (11)	17 (11)	dients are made very hot, a lot		
	JO (11)	1/(11)	motter than water. If we had spoons		
3. Why do you think that rod will let			made out of each of these materials,		
the heat through most quickly?			stirring the very bot toffee mixture?		
not marked			wood and/or perspec	4 (2)	3 (7)
4. Now let's do the experiment.			wood and/or perspex wood	41 (35)	58 (56)
I am going to pour boiling water into			perspex	14 (16)	12 (11)
the mug, and I want you to test each			copper	26 (27)	15 (11)
rod. When you test the rods, touch				(-/)	-> ()
them like this:			9. Why would you use that material?		
Demonstrate how the rods should be			not good conductor of heat	56 (60)	69 (85)
touched — <i>before</i> the boiling water is			Show student the picture of a seugenen		
added. Demonstrate use of timer.			Show student the picture of a saucepan.		
I will get you to check them every 30			The saucepan in this picture is made		
seconds, for two minutes.			of stainless steel. It has a copper		
			bottom, and a plastic handle.		
with the rods already in the mug, pour			10 Why do you think it has a copper		
to time the 20 cos intervals. Percet the			bottom? conducts heat well	75 (70)	91 (93)
following instruction / times (over 20			11 Why do you think it has a plastic		
seconds)			handle? conducts heat poorly	91 (92)	96 (05)
			functe. Conducts near poorty	JI (J4)	
5. Feel each rod now, and tell me					
what you notice.					

Commentary:

Both year 4 and year 8 students conducted and interpreted the experiment quite well. Year 8 students showed better initial knowledge of the rod materials, and were better able to explain the practical applications. There was no marked change in performance between 1995 and 1999.